ICERM Lecture 3
(Geodesic planes in ∞-val hyp molds)

Wee oh (Yale Univeristy) May 17,2023

$$
\begin{aligned}
& G=S 0^{\circ}(n, 1)=I \operatorname{som}^{+}\left(H^{n}\right) \quad n \geqslant 3 \\
& \Gamma<G \text { convex cocpt } \\
& R F M=\left\{[g] \in G_{\Gamma}^{G} \mid g^{ \pm} \in \Lambda\right\} \subset R F_{+} M=\left\{[g] \mid g^{+} \in \wedge^{2}\right\} \subset \frac{G}{\Gamma}
\end{aligned}
$$

RFM

$$
N=\left\{\left.\left(\begin{array}{ccc}
1 & x & * \\
I & x^{*}
\end{array}\right) \right\rvert\, x \in \mathbb{R}^{n-1}\right\} \quad \begin{aligned}
& \left.\max _{\text {uniphetent }} \begin{array}{l}
1
\end{array}\right) \\
& \text { subgp }<G
\end{aligned}
$$

$U \cong \mathbb{R}^{k-1}<N$ conn.

$$
\begin{aligned}
& H(U)=\left\langle U, U^{t}\right\rangle=S 0^{\circ}(k, 1) \\
& \overline{x H(U)} ? \quad \overline{x U} ?
\end{aligned}
$$

$$
\mathcal{L}_{H(O)}=\{L=H(\hat{U}) C \mid U<\hat{U}<N
$$

$z H(\hat{U}) C$ closed for some $\left.z \in R F_{F} M\right\}$
any reductive subogp $D U$

$$
\mathcal{L}_{u}=\left\{v L v^{-1} \mid L \in \mathcal{L}_{u}, v \in N\right\}
$$

Thm (MMO $n=3, L O n \geqslant 4)$
$M=p \backslash H^{n} C C$ hyp mfld with Fuchsian ends
(1) A(U)-orbit closures

$$
\begin{aligned}
& \forall x \in R F M, \\
& \overline{x H(U)}=x L \cap R F_{+} M \cdot H(U)
\end{aligned}
$$

for some $L \in \mathcal{L}_{H(U)}$
(2) U-orbit closures

$$
\begin{aligned}
& \forall x \in R F_{+} M, \\
& \overline{x U}=x L \cap R F_{+} M
\end{aligned}
$$

for some $L \in \mathcal{L}_{\mathcal{U}}$
(3) Equidis tributions

$$
\begin{aligned}
x_{i} L_{i} \max \text { closed } & x_{i} \in R F_{+} M \\
\text { orbits } & L_{i} \in \mathcal{L}_{U} \\
\lim _{i \rightarrow \infty} x_{i} L_{i} \cap R F_{+} M= & R F_{+} M
\end{aligned}
$$

For $\bar{c}=1,2,3$,
$(i)_{m}$ holds if (i) is true for all $U<N$ with codim $\leq m$
$m=0 \quad(1) \&(3)$ trivial
(2) minimality of N-action

$$
\begin{aligned}
(2)_{m}+(3)_{m} & \Rightarrow(1)_{m+1}+(2)_{m}+(3)_{m} \\
& \Rightarrow(1)_{m+1}+(2)_{m+1}+(3)_{m} \\
& \Rightarrow(2)_{m+1}+(3)_{m+1}
\end{aligned}
$$

Rmk If $\operatorname{vol}(M)<\infty,(3)_{m}$ is not needed in the induction pf.

What is special about \subset mils with Fuchsian ends?
Recurrence of $U=\left\{U_{t} \mid t \in \mathbb{R}\right\}$-orbits"
If $\frac{G}{\Gamma}$ cpt, $x \cup$ remains in a cot
If $\operatorname{vol}\left({ }_{P}^{G}\right)<\infty$, Dani-Marqulis

$$
\begin{aligned}
& \forall x \in \frac{G}{\Gamma}, \& \forall \varepsilon>0, \exists \varphi+C \\
& \frac{1}{2 T}\left\{\left\{t \in[-T, \tau] \mid x u_{t} \in C\right\} \mid \geqslant(1-\varepsilon)\right.
\end{aligned}
$$

If $\operatorname{Voll}\left(\Gamma^{G}\right)=\infty$, for are x,
$H_{\text {cpu }} e \subset \frac{G}{r}$,

$$
\frac{1}{2 T}\left|\left\{t \in[-\tau, \tau] \mid x u_{t} \in e\right\}\right| \rightarrow 0
$$

Prop $M=\Gamma \backslash H^{n}$ Fuchsian ends $\exists k>1$ sit $\forall x \in R F M$, $T(x)=\left\{t \in \mathbb{R} \mid x U_{t} \in R F M\right\}$ is k-thick, i.e. $\quad \forall r>0$,

$$
T(x) \cap([-k r,-r] \cup[r, k r]) \neq \phi
$$

Pf) $\varepsilon_{0}=\inf _{i \in j} d\left(\right.$ hall B_{i}, hall $\left.B_{j}\right) S^{2}-\Lambda=\cup B_{i}$

$0, \infty \in \Lambda$

$$
u=\mathbb{R}=\left\{x_{1}-a x_{i} i s\right.
$$

$t,^{e} f+\tau_{t}$
$\left\{t \mid{ }_{\|}\right.$re $\left.u_{t} \in R F M\right\}$

$$
\begin{aligned}
& \left\{t \mid u_{t}^{-}=t \in \Lambda\right\} \\
& =\mathbb{R} \cap \wedge
\end{aligned}
$$

Unipotent blowup lemma
Let $g_{n} \rightarrow e$ in $G-N(U)$
$T \subset \mathbb{R} \cong U \quad K$-thick subset
$\limsup _{n \rightarrow \infty} T g_{n} U$ contains $q \in N(U)-U$

Spae $y u_{n} \rightarrow x \in \overline{y U}$

$$
\begin{array}{ll}
x g_{n} \quad & g_{n} \notin N(U) \\
g_{n} \rightarrow e
\end{array}
$$

Since $T(x)=\left\{t \in \mathbb{R}=U \mid x u_{t} \in R F M\right\}$ is k-thick,
$\exists u_{t_{n}} \in T(x)$ and $u_{s_{n}} \in U$
sit $u_{t=n} g_{n} u_{s_{n}} \rightarrow q \in N(U)-U$.

$$
\begin{aligned}
x g_{n} u_{s_{n}} & =x u_{t_{n}}\left(u_{\text {El }} g_{n} g_{n} u_{s_{n}}\right) \\
& \rightarrow z \in \overline{y U}
\end{aligned}
$$

This is good enough for $n=3$ to show P as closed or dense

In higher $\operatorname{dim} 34$, we also need
Avoidance principle

$$
\begin{aligned}
G(U)= & \left\{x \in R F_{+} M \mid x U\right. \text { is } \\
& \text { not contained in any } \\
& \text { closed orbit of } L \leqslant G\} \\
J(U)= & R F_{+} M-G(U)
\end{aligned}
$$

want: If $x \in \mathscr{G}(U), \overline{x U}=R F_{t} M$ For this, we need to understand

$$
\begin{aligned}
T^{*}(x)=\{t \in \mathbb{R} \mid & x u_{t} \in R F M \\
& \left.x u_{t} \notin \rho(U)\right\}
\end{aligned}
$$

Avoidance Thm (Lee-0.) $M=\Gamma \backslash \mathbb{H}^{n} \quad$ Fuchsian ends. \exists cpt subsets $E_{1} \subset E_{2} \subset \cdots$ s.t $\zeta(U) \cap R F M=\bigcup_{i \geqslant 1} E_{i}$ s.t $\forall x \in g(U) \cap R F M, \quad \forall i \geqslant 1$, \exists open $\theta_{i} \supset E_{i} \quad$ s.t

$$
T^{* *}(x)=\left\{t \in \mathbb{R} \mid \quad x u_{t} \in R F M-\theta_{i}\right\}
$$ is k_{0}-thick

Thank You !!

